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Abstract

Neurotoxicity studies are important in the preclinical stages of drug development

process, because exposure to certain compounds that may enter the brain across a

permeable blood brain barrier damages neurons and other supporting cells such as

astrocytes. This could, in turn, lead to various neurological disorders such as

Parkinson's or Huntington's disease as well as various dementias. Toxicity assessment

is often done by pathologists after these exposures by qualitatively or semiquantita-

tively grading the severity of neurotoxicity in histopathology slides. Quantification of

the extent of neurotoxicity supports qualitative histopathological analysis and

provides a better understanding of the global extent of brain damage. Stereological

techniques such as the utilization of an optical fractionator provide an unbiased

quantification of the neuronal damage; however, the process is time-consuming.

Advent of whole slide imaging (WSI) introduced digital image analysis which made

quantification of neurotoxicity automated, faster and with reduced bias, making sta-

tistical comparisons possible. Although automated to a certain level, simple digital

image analysis requires manual efforts of experts which is time-consuming and limits

analysis of large datasets. Digital image analysis coupled with a deep learning artificial

intelligence model provides a good alternative solution to time-consuming stereologi-

cal and simple digital analysis. Deep learning models could be trained to identify

damaged or dead neurons in an automated fashion. This review has focused on and

discusses studies demonstrating the role of deep learning in segmentation of brain

regions, toxicity detection and quantification of degenerated neurons as well as the

estimation of area/volume of degeneration.
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1 | INTRODUCTION

A promising and emerging field of artificial intelligence (AI) interacting

with neuroscience is the deep learning approach (Marblestone,

Wayne, & Kording, 2016; Richards et al., 2019). Deep learning is a

machine learning method which is a subsystem of AI (Bini, 2018;

LeCun, Bengio, & Hinton, 2015). It is an artificial neural network with

several hidden layers, and these hidden layers are placed between

input and output layers of the network. Deep learning neural network

models are trained or learned to do specific computation. Larger artifi-

cial neural networks can be trained with this approach and thus are

very useful for larger data sets (Benke & Benke, 2018; De Cnudde,
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Ramon, Martens, & Provost, 2019; Hey, Butler, Jackson, &

Thiyagalingam, 2020). Nowadays, deep learning approach is very pop-

ular with researchers working on behavioral and neurophysiological

data to tap into representations of neural activity in the brain

(Phan, Dou, Piniewski, & Kil, 2016; Vahid, Mückschel, Neuhaus,

Stock, & Beste, 2018). As the popularity and effectiveness of deep

learning approach have increased, researchers have started using this

approach to automate procedures which require manual efforts that

has limited our efforts to analyse larger data sets. Deep learning neu-

ral networks are feedforward neural network (FNN), recurrent neural

network (RNN), or convolutional neural network (CNN)

(Emmert-Streib, Yang, Feng, Tripathi, & Dehmer, 2020) (Figure 1).

CNNs have become popular in recent times because of their low

computational cost and their applications in various areas such as

image recognition, image classification, image segmentation, drug

design and drug discovery. CNNs are motivated by similar networks in

the brain and particularly from the findings from the cells in the visual

cortex that respond to edges and lines as demonstrated by Hubel and

Wiesel (1962). CNNs are effective because of their weight sharing

approach. They perform convolution, pooling and nonlinearity

operations through their convolutional and pooling layers between

the output and input and extract features from the image that was

fed as an input. Before the convolutional operation is performed,

filters (Kernels) are introduced to detect different features in the input

image. Parameters such as filter size and number are fed to the CNN.

Training allows the CNN to learn filter values.

AI/deep learning integration in pathology and histology was intro-

duced with advances in digital imaging (Brachtel & Yagi, 2012;

Ghaznavi, Evans, Madabhushi, & Feldman, 2013; Gurcan et al., 2009;

Aeffner et al., 2019; Ameisen, Naour, & Daniel, 2012; Bhargava &

Madabhushi, 2016; Hanna et al., 2019; Webster & Dunstan, 2014;

Ying & Monticello, 2006; Zarella et al., 2019; Laurinavicius

et al., 2012; Pantanowitz, 2010; Park, Pantanowitz, & Parwani, 2012).

One of the digital imaging modalities which has great advantages is

whole slide imaging (WSI). It requires commercially available scanners

such as the ones from Olympus (Olympus corporation, USA) and

Aperio (Leica Biosystems Inc, USA) to digitally convert glass slides

with histological sections into high resolution digital images which can

be later viewed and analysed with the help of specific software. Deep

learning approaches are now increasingly getting attention in the field

of digital image analysis (Kraus et al., 2017; Fuyong, Yuanpu, Hai,

Fujun, & Lin, 2018; Dimitriou, Arandjelovi�c, & Caie, 2019; Shen,

Wu, & Suk, 2017; Moen et al., 2019; Litjens et al., 2017). Digital image

analysis using deep learning adds classifiers to identify objects in an

image using different classification steps in which deep learning

models are trained (Janowczyk & Madabhushi, 2016; Komura &

Ishikawa, 2018; Madabhushi & Lee, 2016). These trained models are

then used to extract objects in an automated fashion from similar kind

of images. Most of the efforts involving deep learning in digital image

analysis have been done on histopathological sections mainly from

oncology (Bug, Feuerhake, Oswald, Schüler, & Merhof, 2019; Sikpa

et al., 2019; Tang, Zawaski, Francis, Qutub, & Gaber, 2019), toxicology

F IGURE 1 Schematic representation of convoluted neural network (CNN). (A) Figure shows CNN as a subsystem of machine learning which
itself is subsystem of artifical intelligence. (B) Upper panel shows schematic representation of convolutional and pooling layers between input
image and output in a typical CNN. Lower panel shows role of CNN in brain segmentation, neuroxicity detection and analysis. Red box shows
schematic example of detection of degenerated neurons (black) in AmCuAg stained section
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(Hu et al., 2020; Turner et al., 2020) and neuropathology (Signaevsky

et al., 2019) studies.

2 | QUANTITATIVE NEUROTOXICITY

Quantification in histopathology has been widely used in recent times

because of its advantages in terms of precision, reduced bias and gen-

eralizability and provides a window for statistical comparisons. Several

studies have been performed which involve quantification of histo-

pathological findings (Horai et al., 2019; Bishop & Robinson, 2001;

Horai, Kakimoto, Takemoto, & Tanaka, 2017; Vandenberghe

et al., 2016; Majeed et al., 2019). Neurotoxicity studies are an

essential part of the regulatory regulations for drug development.

Safety and efficacy studies are conducted before the clinical trials.

Neurotoxicity evaluation in the preclinical stages is normally per-

formed by board certified pathologists. Pathologists grade the severity

of toxicity by evaluating brain sections on a 4- or 5-point grading scale

(Schafer et al., 2018). Such a histopathological assessment is the gold

standard, but it takes a significant amount of time and is mainly

qualitative or semiquantitative (Meyerholz & Beck, 2018).

Because toxicity in the nervous system depends on several

factors such as dose of the toxic compound, age and gender of the

animal and exposure time to the dose, it becomes very important to

quantify neurotoxicity. Quantification of toxicity provides a better

understanding of the toxic effects of compounds and drugs. Various

areas of the brain have significant differences in vulnerabilities to

various toxic agents because of factors such as nonuniform distribu-

tion of receptors, oxidative stress and differences in synaptic connec-

tions. Quantification of neurotoxicity is an excellent tool to illustrate

these differences in vulnerabilities by statistically comparing extent of

degeneration in different brain regions. Also, being able to get a value

for global toxicity is a far more powerful approach than just reporting

qualitative changes in different areas because the additive effect of a

large number of small changes (global effects) is highly significant in

evaluating the overall comprehensive damage to the brain. It provides

data for better statistical comparison of toxic effects to support the

traditional histopathological analysis of toxicity done by pathologists.

Quantification of toxicity mainly involves measuring degenerated

area in the brain and/or total degenerated neuron counts in the brain

after exposure to toxic compounds. Degenerated area and

degenerated neurons in the brain can be visualized by various staining

methods such as amino cupric silver (AmCuAg) staining

(Baloyannis, 2015; de Olmos, Beltramino, & de Lorenzo, 1994;

Switzer, 2000) and Fluoro-Jade stains (Schmued & Hopkins, 2000;

Schmued, Stowers, Scallet, & Xu, 2005). Development of digital image

analysis tools has opened efficient ways of quantifying neurotoxicity

in brain of animals treated with various neurotoxic compounds as well

as in neurodegenerative conditions (Johnstone et al., 2018; Jensen

et al., 1993; Kneynsberg, Collier, Manfredsson, & Kanaan, 2016;

Srivastava et al., 2020; Scallet, Pothuluri, Rountree, &

Matthews, 2000). Image analysis tools have automated certain steps

in the workflow (Figure 2) for the quantification of toxicity, but there

are still limitations that make the procedure time-consuming. In this

F IGURE 2 Workflow for neurotoxicological analysis. Several steps are involved in the analysis of neurotoxicity starting from tissue
preparation which involves sectioning and staining of brain sections with markers of neuronal degeneration. Image acquisition of the stained
sections is next step in the workflow followed by whole sliding imaging to produce high resolution digital images of the sections. High resolution
digital images are a great source for further analysis which could be either manual or by image processing tools which also provides automated
solutions. Neurotoxicity analysis involves brain segmentation into various brain regions for detection and quantification of neurotoxicity for
better understanding of extent of toxicity and sensitivity of different areas to neurotoxic compounds/drugs
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update on advances in deep learning in digital image analysis, we have

discussed the time-consuming steps in the process of quantification

of neurotoxicity data and where a deep learning approach is contrib-

uting as well as the potential for transforming the way we analyse and

interpret the neurotoxicity data.

3 | AI/DEEP LEARNING IN AUTOMATED
BRAIN SEGMENTATION INTO DIFFERENT
REGIONS

One of the major time-consuming steps in the quantification of toxic-

ity is the manual procedure to mark regions of interest for analysis on

the brain sections. It basically involves segmentation of brain into

regions of interest (by drawing annotation layers [Figure 3]).

Annotation layers are manually drawn within the regions of interest in

the brain sections. It takes significant amount of time and, as a result,

limits the whole brain analysis with respect to changes in different

areas of the brain. Also, because of the time-consuming manual

procedure, it limits the number of experimental animals analysed.

Segmentation of the brain into different regions is important for

quantitative neurotoxicity analysis because neurons in different areas

of the brain show differential vulnerability to toxic compounds.

Segmenting of brain regions will allow quantification of different areas

separately, which will help in statistical comparison of degeneration

between all the areas of the brain rather than just focusing on regions

of interest. This is a process too time-consuming for individuals to

perform manually.

Deep learning/AI can be extremely useful in segmentation of the

brain regions. The possibility of annotating an area (such as claustrum

or substantia nigra) in an image or set of images (coronal brain section)

and training the algorithm to identify and segment that brain structure

in all the remaining sections in that animal and for all the sections in

other experimental animals is an important advance. This will help in

significantly reducing the time spent in segmentation of the brain

areas and will make it possible to run the image processing algorithm

in all the animals in these segmented brain areas at the same time.

Researchers have been trying to create such segmentation algorithms

through an automated AI approach, but it is an evolving area of

research. Several studies have been done to automate image segmen-

tation using deep CNN (Haberl et al., 2018; Kraus, Ba, & Frey, 2016).

CNN is an artificial neural network model with an input and output

layers and several hidden layers. Hidden layers in CNN consist of con-

volutional layers (Yamashita, Nishio, Do, & Togashi, 2018). In a study

by Kraus et al. (2016), deep CNNs with multiple instance learning

(MIL) have been used to classify and segment images (breast cancer

F IGURE 3 Schematic shows segmentation of a coronal section of the rat brain. Upper panel shows manual annotations on the brain image
showing segmentation into different brain areas. Lower panel show how deep learning approach could automate the process of brain
segmentation. Input image which is manually annotated is fed to deep learning model which is later trained. Similar images from other animals are
fed to the model for the segmentation into different brain areas. Output shows images with segmentation performed by deep learning model
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cells data set) which contained different channels with fluorescent

markers such as for DNA and actin filaments. Haberl et al. (2018)

also used deep CNN on images obtained from light, X-ray and

electron microscopy for image segmentation which is known as

CDeep3M. It is a cloud-based ready to use tool using a neural

network model for image segmentation. A study by Tan et al. (2020)

used a framework known as DeepBrainSeg to segment brain wide

regions using CNN training. In this study, brain images from mouse

brain imaged using various imaging methods such as fluorescence

microscopy, microoptical sectioning tomography, serial two photon

system and MRI (T2*) were used. Images were used to manually

delineate boundaries to develop a training set, and a neural

network was trained on that. Other processing stages such as

registration and prediction by the trained neural network were

performed to get segmented regions. One recent study has

demonstrated automated segmentation of the mouse brain using

deep neural network-based method known as SeBRe (Iqbal, Khan, &

Karayannis, 2019). In this study by Iqbal et al. (2019), a brain image

from a mouse brain labelled with a neuronal marker was taken as

an input image. The image was manually annotated for different

brain regions. It was fed into a deep brain neural network model

and then processed using several processing stages. The model was

trained and applied to a similar image from different animals.

Output was imaged with segmented regions as classified in the

input image. To measure its efficiency, SeBRe was applied on

images with different neuronal markers. Segmentation applied to

subregions such as CA1, CA2 and CA3 and the dentate gyrus of

the hippocampus were isolated using SeBRe suggesting that fine

scale segmentation could also be done with this neural network

model.

Numerous studies have used MRI as a tool to determine neu-

rotoxicity (Csernansky, 2001; Hanig et al., 2014; Johnson

et al., 2014). Segmenting brain regions in the MRI images and

neurotoxicity analysis in the segmented region is important for bet-

ter understanding of the extent and sensitivity of different areas to

the toxic compounds or drugs. There are many studies that have

proposed using automated brain segmentation using MRI images

(Feo & Giove, 2019; Liu, Unsal, Tao, & Zhang, 2020; Oguz, Zhang,

Rumple, & Sonka, 2014). Several studies (Guha Roy, Conjeti,

Navab, & Wachinger, 2019; Kushibar et al., 2018; Mehta,

Majumdar, & Sivaswamy, 2017) have used deep learning approach

for segmenting the brain regions using MRI image data. Some

studies such as Iqbal et al. (2019) have shown effectiveness of their

deep learning model by training them on different imaging modali-

ties such as images of the labelled (neuronal marker) sections

obtained from the mouse brain as well as on MRI brain data sets,

but such studies are very scarce.

There are not enough neurotoxicity studies which have

employed this approach of segmenting the brain regions to

quantify neurotoxicity in different brain regions to understand the

sensitivity and vulnerability of these regions to toxic compounds or

drugs.

4 | AI/DEEP LEARNING IN AUTOMATED
DETECTION AND ANALYSIS OF TOXICITY IN
DIFFERENT REGIONS OF BRAIN

Cell detection is a crucial step in quantitating histopathological results

(Xing & Yang, 2016). For instance, some image processing softwares

such as ImageJ (NIH, Maryland, USA), Fiji (Schindelin et al., 2012) and

Halo (Indica labs, NM, USA) have colour thresholding (Fermin,

Gerber, & Torre-Bueno, 1992) tools (detect structures with specific

colour) which are used to detect silver stained degenerated neurons

that appear black in brain sections. This approach has its limitations.

Artefacts such as nonspecific staining as well as debris of degenerated

neurons are also picked up by this method which adds to the total

estimated degeneration in the brain sections. An AI approach has a

considerable potential to address this limitation. Models can be

trained using a deep learning approach to detect degenerated neurons

based on their size, colour and shape as shown (manually classified)

on the input image fed to the model. Deep CNN model has been used

to detect neuronal damage automatically in rat cerebral ischaemic-

reperfusion model (Wang et al., 2020). Images of label-free brain

sections were obtained using two photon microscopy, and a deep

learning algorithm was applied to it to detect injured neurons.

Pathologists identified damaged neurons on two photon microscopic

and H&E images. Brain sections were stained by NeuN and H&E to

compare this approach to standard histology in detecting neuronal

damage. This study suggested that deep learning application on two

photon images provides a tool to automatically detect neuronal

damage on label-free brain sections.

Exclusion of artefacts could also be incorporated in the AI

workflow for detection of degenerated neurons. Exposure to a neuro-

toxic drug leads to inflammatory responses such as activated

microglia. Detection of activated microglia could be crucial in under-

standing toxicity of a compound. Deep learning could play a very

important role in detection of activated microglia in an automated

fashion based on some basic features such as number, area and length

of the processes of activated microglia which are different from

nonactivated microglia (Heindl et al., 2018). Similarly, a deep learning

model could be trained to detect morphological changes in astrocytes

after exposure to toxic compounds (Kayasandik, Ru, & Labate, 2020;

Suleymanova et al., 2018). Degenerative changes in white matter

could also be detected with trained deep learning models. In one

study, brain wide analysis for neuron detection has been performed

with a deep learning method (DeNeRD—detect neurons in different

brain regions during development) (Iqbal, Sheikh, & Karayannis, 2019).

Human experts marked neurons by annotation on the brain images,

and then a deep neural network model was created to learn the fea-

tures of the neurons during the training sessions. Images of mouse

brain section were fed into the DeNeRD neural network as an input

image, and neurons were detected as an output in the preregistered

brain areas after completion of a set of preprocessing steps. Different

brain markers such as CAMKIIa, GAD1 and VGAT were used in the

study by Iqbal et al. (2019) to detect neurons in the whole brain.
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Another generic deep learning-based solution to cell detection, cell

segmentation and morphometry is U-Net (Falk et al., 2019). Perfor-

mance of U-Net was demonstrated on 2D images from fluorescence

microscopy and 3D bright-field images for the detection of microglial

cells tagged with fluorescent-protein. Neurite segmentation was also

performed using U-Net in electron microscopy images stack. U-Net

also runs as a plugin as an interface with the popular and freely avail-

able ImageJ software and provides cloud service for easy accessibility

from a remote computer. Because it can be trained on new data sets,

U-Net has an advantage over other software such as CellProfiler

(Carpenter et al., 2006; Jones et al., 2008) where training on new data

is not allowed. CellProfiler software was developed by the Carpenter

lab at the Broad Institute of Harvard and MIT. CellProfiler 3.0

(McQuin et al., 2018) provides deep learning (ClassifyPixels-UNet

module) AI solutions for image segmentation and volume analysis

demonstrated on 3D hiPSCs (human induced pluripotent stem cell)

images. Some of the commercial softwares such as HALO (Indica labs,

NM, USA) and Aivia 6 (DRVISION, Bellevue, WA, USA) also provide

AI solutions to detect rare events and cells. HALO AI solutions are

mainly based on VGG, MiniNet and DenseNet neural networks for tis-

sue segmentation and quantification of images of H&E-stained, Silver

stained, ISH and IHC stained sections. Aivia 6 (DRVISION, Bellevue,

WA, USA) provides AI solutions in the form of pretrained neural

network models which are based on CNN architectures such as

DenseNet, UNet and 3D-UNet for image segmentation in 3D images

obtained from electron microscopy.

Another important step in quantitative neurotoxicology is deter-

mining the estimate of the overall damage in the brain caused by the

exposure agent. This estimate could be in the form of total

degenerated area, degenerated neuron cell counts and white matter

damage. Detection of degenerated neurons should be counted in

order to get estimates of correct neuron numbers which are lost due

to the toxic effect of a compound or due to neurodegenerative

disease. This is important as it can help in understanding the effect of

drug at different stages of exposure to a compound or progression of

a neurodegenerative disease. Cell/neuron counting can be done

manually, aided by a computer, stereologically and by digital image

analysis. Manual counting of degenerated neurons has its advantages

in terms of its adaptability and flexibility because an expert can detect

artefacts and could classify objects more accurately during counting

process. Disadvantages of manual counting are in the form of bias and

variation when for instance more than one expert is involved in the

counting process on same dataset. Also, manual counting is

time-consuming and limited by number of experts performing the

task. Computer assisted counting allows counting with faster pace but

lacks adaptability.

Stereological counting of neurons can be done using various

methods such as optical fractionator and cell profiling (Gundersen,

Bendtsen, et al., 1988b; Gundersen & Jensen, 1987; Gundersen,

Jensen, Kiêu, & Nielsen, 1999; Gundersen, Bagger, et al., 1988a;

Caicedo et al., 2017; Golub et al., 2015; Gundersen, 1986; Schmitz &

Hof, 2000, 2005; Schmitz, Korr, & Heinsen, 1999; West, 1999;

Olesen, Needham, & Pakkenberg, 2017; Herculano-Houzel, von

Bartheld, Miller, & Kaas, 2015; Ip, Cheong, & Volkmann, 2017;

Larsen, 2017). Sampling biases could be avoided by stereological

techniques such as optical fractionator unlike in nonstereological

techniques and profile counting. Assumption of features such as size,

shape and orientation is not done in stereology technique. In optical

fractionator technique, sampling and counting of all the objects/cells

have equal probability which makes this technique unbiased.

Optical fractionator involves optical dissector and fractionator for

quantification (mainly counting) which is mainly done for 3D

structures.

Stereological counting of neurons has an advantage over manual

as well as over counting done with help of a computer, but is still

time-consuming and most of it requires a lot of manual labour. Such

techniques require neuron counting for each region in a brain

section separately. For the whole brain analysis, every brain section in

an animal is separately analysed for neurodegeneration which requires

significant manual effort. Some studies have employed both manual

counting and stereological counting to report neurotoxicity. One such

study by Bukhatwa et al. (2009) reported dopaminergic neuron

(Flurogold stained) loss in substantia nigra after administration of

proteasomal inhibitor using manual counting and compared it with

stereological counting to confirm neuron loss. Significant loss of neu-

rons was observed with stereological counting when compared to

manual counting reflecting the importance of the counting method

used for neurotoxicity studies. Neurotoxicity analysis in 2D digital

images became more meaningful with introduction of whole slide

imaging and digital image analysis tools which permitted more

comprehensive reporting of degenerated areas and neuron count.

Advantages of digital image analysis can be appreciated as it allows

quantification of axon density (area occupied by axons) and axon

number to observe the effect of toxins on axonal loss (Johnstone

et al., 2018; Mysona et al., 2020). Deep learning as an alternative

approach to count neurons is becoming popular. In one of the studies,

deep CNN was used to count tyrosine hydroxylase positive dopami-

nergic neurons in substantia nigra of mouse and rat brain (Penttinen

et al., 2018). Stereological counting of neurons was also performed

and compared to counts done by CNN using Aiforia™ platform

(Aiforia Technologies, MA, USA), and results showed similar counts of

neurons in 6-OHDA (6-Hydroxydopamine) lesioned as compared to

intact rats and mice brains. Aiforia AI solutions are based on CNN and

have demonstrated quantification of TH+ neurons in substantia nigra

of rat brain and activated states of microglia and astrocytes which are

important markers in neurotoxicity studies. Aiforia AI also provides

solution for image segmentation for region- wise analysis in brain sec-

tions. Another study also reported automatic cell counting which was

performed using deep learning approach and unbiased stereology

(Alahmari et al., 2019). For the unbiased stereology counting of

Neu-N (Neuronal Nuclei) positive neurons from mouse neocortex sec-

tions, an automated fractionator method was used which included

counting rules which authors suggested were unbiased that avoided

errors and false assumptions in the counting process. Deep learning

training was done on accepted masks after unbiased stereology using

an adaptive segmentation algorithm (ASA) (Mouton et al., 2017) and
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examined on test data. In one of the recent studies, machine learning

was used to predict neurotoxicity in organoids of midbrain dopami-

nergic neurons in which Parkinson's disease (PD) was induced by

6OHDA neurotoxin (Monzel et al., 2020). Organoids were derived

from human iPSC (induced pluripotent stem cell) lines. 6OHDA expo-

sure led to reduction in dopaminergic neurons as reflected by reduc-

tion in tyrosine hydroxylase (TH+) positive cells. A machine learning

model which was based on random forest algorithm (Breiman, 2001)

was used. A model was build using training data sets, and separate

data sets were used to validate the model to predict neurotoxicity in

organoids. Training models using deep learning methods have a signif-

icant potential to make degenerated neuron counting easier due to

automation.

AI approaches such as deep learning will significantly reduce

the time allotted to the analysis of the extent of neurotoxicity.

This will contribute in increasing the number of brain sections that

can be processed resulting in more experimental animals being

analysed bringing reproducibility and reduced bias to the data.

Some of the deep learning models such as CDeep3M and Aiforia

platform available for image segmentation and quantification are

cloud-based (Navale & Bourne, 2018) which makes them

more effective for larger datasets in terms of training the

algorithms and lowering the computing cost over other methods

for neurotoxicity analysis. A list of some of the deep learning AI

solutions for image segmentation and quantification are given in

Table 1.

TABLE 1 Examples of deep learning AI solutions for image processing

Name Method Application

U-Net (Falk et al., 2019) ❖ Generic deep-learning-based

❖ Convolutional neural network

❖ Interface with ImageJ through Plugin

❖ Cloud-based

❖ Cell detection

(e.g., fluorescent-protein-tagged

microglial cells)

❖ Cell segmentation

(e.g., 2D images from fluorescence

microscopy and 3D bright-field images)

❖ Neurite segmentation (electron

microscopy stacks)

❖ Morphometry

DeNeRD (Iqbal, Sheikh, &

Karayannis, 2019)

❖ Convolutional neural network method

(fast-RCNN)

❖ Images of mouse brain sections used

were obtained from open source

database (Allen Institute for

Brain Science)

❖ Neural density could be calculated of a

brain area.

CDeep3M

(Haberl et al., 2018)

❖ Deep convolutional neural network

❖ Cloud-based

❖ Image segmentation

Images from light, X-ray, and electron

microscopy

SeBRe (Iqbal, Khan, & Karayannis, 2019) ❖ Convolutional neural network

❖ Deep ResNet101 and FPN architectures

(first five stages)

❖ Segmentation of brain images

(e.g., images from mouse brain)

❖ MRI (T1-weighted) images of human

brain obtained from internet brain

segmentation repository (IBSR)

HALO (Indica Labs, USA) ❖ VGG, MiniNet, and DenseNet neural

networks

❖ Cloud-based

❖ Tissue segmentation

❖ Quantification after classification

(e.g., H&E-stained, silver stained, ISH, and

IHC stained sections)

Aiforia (Aiforia Technologies, Cambridge,

MA, USA)

❖ Convolutional neural networks

❖ Cloud-based

❖ Quantification of TH + neurons,

activated states of microglia, astrocytes in

images of rat brain,

❖ Image segmentation based on

anatomical regions

Cell Profiler (McQuin et al., 2018) ❖ Deep learning model

❖ ClassifyPixels-Unet module

❖ Cloud-based

❖ Image segmentation

❖ Volume analysis

(e.g., 3D hiPSCs [human induced pluripotent

stem cell] images)

Aivia 6 (DRVISION, Bellevue, WA, USA) ❖ Pretrained neural network models

❖ Based on CNN architectures such as

DenseNet, UNet and 3D-UNet

❖ Cloud-based

❖ Image segmentation

❖ 3D images from electron microscopy
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5 | CONCLUSION

Use of AI in neuroscience is a rapidly evolving field with its application

noticed in various areas under the umbrella of brain research. One

such area where its application could be very useful is quantification

of toxicity in brain. Whole slide digital imaging has made a significant

contribution to histopathological analysis, and it is becoming very use-

ful in neurotoxicity analysis. Various image processing tools have been

developed after the introduction of whole slide digital imaging. These

tools are very effective in detecting degenerated areas and neurons

but have limitations in terms of excluding artefacts/noise in the data.

A deep learning approach addresses these issues and has been a very

powerful tool as it reduces bias and increases accuracy in the data

interpretation. Deep learning is showing promise in terms of auto-

mated and precise brain segmentation, automated detection of

degenerated neurons and counting which are crucial for quantification

of neurotoxicity. Although a deep learning approach has been applied

to specific tasks such as brain segmentation, there is scarcity of

workflow available in any commercial software where automated

brain segmentation and automated degenerated neuron detection/

analysis using AI/deep learning could be accomplished utilizing a sin-

gle platform.
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